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ABSTRACT 
 
An enhanced GNU Radio flow is presented that seamlessly 
augments the standard GNU Radio framework with modules 
that reside in FPGAs, yet preserves the GNU Radio 
dynamics by providing full-custom radio hardware/software 
structures in seconds. By delegating portions of a GNU 
Radio flow graph to networked FPGAs, a larger class of 
software-defined radios can be implemented. Assembly of 
the signal processing structures within the FPGAs is 
accomplished using an enhanced flow where modules are 
customized, placed, and routed in a fraction of the time 
required by the vendor tools. With rapid FPGA assembly, a 
GNU Radio designer retains the ability to perform “what-if” 
experiments, which in turn greatly enhances productivity. 
 
 

1. INTRODUCTION 
 
Software defined radios (SDRs) have changed the paradigm 
of slowly designing custom radios, instead allowing 
designers to quickly iterate designs with a large range of 
functionality. With the help of environments like the open-
source project, GNU Radio, a designer can prototype radios 
with greatly improved productivity. The inherent 
reconfigurability of CPUs makes them useful tools for 
realizing rapid development of radios, but their inability to 
process large amounts of data at once has always limited 
their use for high-throughput signal processing [1]. Even the 
most sophisticated processor can only achieve limited data 
rates and it becomes difficult to meet latency requirements 
as more processes are added. 
 Due to the software performance limitations in the 
GNU Radio framework, only radios with a certain level of 
complexity can be realized. For SDRs to become more 
prevalent in radio prototyping and development, 
accelerators are needed to address the high-throughput and 
computationally intensive portions of the radio. FPGAs are 
nicely suited for this needed acceleration; however, they do 
have properties that make them undesirable for rapid SDR 
development. Due to their long compile times, adding 
FPGAs into a flow designed for only software brings 
prototyping to a crawl. Furthermore, special hardware 
design skills are typically needed, and hardware design 

languages -- far removed from radio design environments -- 
are used for building the accelerator structures. 
 In this paper, enhancements to the GNU Radio 
development environment are presented that provide an easy 
way for adding hardware acceleration to a software radio. 
GNU Radio operates by piecing together software modules, 
either graphically or via a Python script, calling different 
functions on data that stream through a flow graph. In the 
enhanced flow, one or more modules in a design graph can 
be designated to reside in one or more FPGAs. The concept 
of module-based assembly is preserved in the enhanced 
flow, where hardware-centric modules are pre-compiled 
relocatable objects that are placed in a library, and can be 
retrieved, placed, and routed with other modules in a 
designated device when called upon by the GNU Radio run-
time engine. Unlike other approaches, the FPGA 
compilation flow has been altered in favor of rapid assembly 
(place and route) at run time. The communication interfaces 
are pre-implemented for the FPGA so that radio hardware 
designers do not have to develop their own system. The data 
are abstracted to types that GNU Radio software blocks use 
and presented in a standard way to the designer, regardless 
of the interface used to receive the data. In this way only the 
basic signal processing blocks need to be designed in order 
to see them work within the framework of GNU Radio. The 
signal processing blocks that are used often can be added to 
a community-based library for easy reuse. The slow compile 
times are overcome with a modified back-end FPGA 
assembly suite. The project is titled GReasy, GNU Radio 
easy, since implementing signal processing with an FPGA 
accelerator is as easy and fast as creating a normal flow 
graph in GNU Radio. To the radio designer, the complexity 
of the underlying hardware is abstracted away, making it 
appear as if everything compiles and runs in software, 
allowing many iterations to be realized quickly. Radio 
design can continue at the speeds that GNU Radio designers 
are accustomed to but with the range of possible waveforms 
and general functionality extended. 
 
1.1. Organization 
 
This paper is organized as follows; Chapter 2 discusses the 
background to this work, with a focus on the hardware 
involved.  Related works are mentioned to show the 
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necessity of these improvements. Chapter 3 explains the 
enhancements made to GNU Radio to add FPGA 
accelerators without some of the drawbacks of normal 
hardware additions.  Chapter 4 describes how the hardware 
is built with a focus on quick designs rather than an optimal 
placement.  Chapter 5 presents a demonstration of the basic 
functionality of this new model.  Chapter 6 concludes the 
paper. 
 

2. BACKGROUND 
 
Despite being called software-defined radios, a real radio 
can never be completely built with only a processor. There 
must be an antenna and front-end capable of 
receiving/transmitting a signal and possibly doing data 
reduction and front-end filtering to transform that signal into 
a format usable by a software processor. A common way to 
handle this processing requirement is by adding a small 
amount of appropriate hardware back into the flow. 
 
2.1. GNU Radio 
 
GNU Radio is an extensive framework that enables many 
complex designs to be prototyped and built with only a 
General Purpose Processor (GPP) and off-the-shelf radio 
hardware. It is open source and commonly used due to its 
wide range of available radio blocks [2] and has a simple 
user interface. GNU Radio builds SDRs as flow graphs that 
can either be expressed in a Python script or graphically 
wired together with a tool called GNU Radio Companion 
(GRC) [3]. All of the signal processing is done in C++, a 
common language for software development, so that adding 
another custom block to GNU Radio is simple [4]. 
 Each block runs a signal-processing task in a dedicated 
thread that passes data to other threads through shared 
memory buffers. The GNU Radio scheduler handles the 
threads and data with little overhead, but requires the blocks 
to be written in their format and only for GPPs. Currently 
the only supported off-loading of the signal in the flow 
graph is for transmission and reception of analog signals 
with a radio front-end. No other processing hardware can be 
added easily but GNU Radio does allow for rapid software-
only prototypes. 
 One common hardware device for SDRs is a Universal 
Software Radio Peripheral (USRP). There are different 
iterations designed by Ettus Research [5] based on what a 
user needs. All of them are relatively inexpensive, as far as 
hardware goes, so they are common in research and among 
SDR hobbyists. With the use of replaceable daughter cards 
the hardware can be quickly changed to handle different 
frequencies for transmitting and receiving. They are well 
supported in the popular GNU Radio community and can be 
connected either by USB or Gigabit Ethernet for more 
bandwidth. When used as receivers, the USRPs convert 

analog signals to digital signals and decimate them to 
appropriate sample rates before passing the signal to a host 
computer for additional signal processing. When used as 
transmitters, the USRPs perform the inverse of the functions 
described for reception. 
 The USRP is an example of a required hardware 
accelerator to provide an RF front-end. It contains a 
motherboard, multiple ADCs and DACs, and a million gate 
FPGA [6]. High-speed general-purpose operations are done 
on the embedded FPGA such as decimation, interpolation, 
and digital conversions [7]. By moving some processing to 
hardware, GNU Radio has already enabled many real-time 
radio prototypes [8]. 
 
2.2. FPGAs 
 
Although there are many powerful options in the field of 
signal processing, FPGAs provide a reconfigurable means 
of handling intensive processing tasks. FPGAs consist of a 
large set of hierarchically connected logic blocks that are re-
programmable to any implementation that can be created 
with a hardware description language. Where GPPs do 
everything in sequence, FPGAs can implement large 
parallel operations and deep computational pipelines, which 
make them indispensable in the SDR domain [9]. 
 A typical FPGA compilation flow involves 
transforming a hardware description into a binary image, or 
bitstream, that is used to program a device. This is a 
multistage process that has many variations, but all of which 
take a large amount of time. The Tools for Open-source 
Reconfigurable Computing (TORC) are useful for user 
manipulation of EDIF and XDL files as well as bitstream 
packets [10]. TORC provides a powerful API for exploring 
alternative ways of processing FPGA designs. By itself, it is 
not a method of FPGA assembly, yet with intricate 
knowledge of the Xilinx flow, custom tools can be created 
with different objectives in mind. The Virginia Tech 
qFlow/tFlow project uses TORC as a foundation to create 
an enhanced Xilinx back-end bitstream generation process 
with the primary objective of rapid compilation [11]. 
 
2.3. Related Work 
 
GNU Radio has seen many iterations and enhancements 
throughout its development. Due to the large community, 
there are constantly software-processing blocks that are 
being produced and new methods of implementing radios 
faster are being shared. Developments more concerned with 
this paper are those that have attempted to add hardware to a 
largely software based design environment. 
 Many projects have been developed to make use of 
FPGAs for software-defined radio acceleration. These 
projects include the Kansas University Agile Radio [12], the 
Japanese National Institute of Information and 
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Communications Technology SDR Platform [13], and the 
Berkeley Cognitive Radio Platform [14] to name a few. 
These implementations all required using special boards and 
software for communication rather than augmenting already 
available systems. They were also limited by the slow 
compile times of FPGAs, although their gains in 
performance were seen as worth this cost. 
 FPGAs have not been added to stock GNU Radio yet as 
“hardware is strictly not part of GNU Radio” [2]. There is 
an FPGA on the USRP devices that can be modified [15] for 
custom applications though. With the recent increase in 
FPGA size on the newer devices these customizations have 
become more popular. Unfortunately the changes made are 
permanently left on the board and run before every flow 
graph receiving data from the USRP. All flexibility is lost 
and their operation is not presented to the user in the flow 
graph. 
 

3. GNU RADIO ENHANCEMENTS 
 
Changes were made to the GNU Radio software distribution 
and additional capabilities were integrated into it to 
facilitate the building of attached hardware. The normal 
GNU Radio functionality is maintained, yet slight changes 
to the system have been made to accommodate distributed 
hardware and more flexible communications, and are 
outlined in this section. 
 

3.1. GNU Radio FPGA Extension Class 
 
The GNU Radio module library is organized into a set of 
well-defined classes. There are separate classes for filters, 
operators, input/output, converters, and more. The entire 
structure is set up to allow easy addition of new processing 
blocks simply by adding another class. The classes inherit 
all of the necessary block information from GNU Radio and 
thus never create new dependencies within the rest of the 
system. This same model was used to develop a hardware 
class that would fit alongside all of the other blocks. 
 Prior work was done to develop an auxiliary FPGA 
(afpga) class for GNU Radio [16]. This class contained an 
afpga_source and afpga_sink that mimicked the behavior of 
a USRP2 source and sink using raw Ethernet frames. The 
only difference was that an afpga_sink sent a packet to a 
connected USRP2 that redirected the stream of data to the 
FPGA. This paradigm was changed because it did not allow 
for the user to have control over how hardware was added to 
the FPGA. The benefits of the new flow can be seen in 
Figure 1.  The legacy blocks evolved into the new afpga_in 
and afpga_out blocks of the current system. Instead of 
presenting data as disappearing into a sink, the afpga_in 
block presents data as entering an FPGA. The new block 
enables GNU Radio data from the computer to be sent to the 
FPGA as well as from the USRP2, and even from other 
FPGAs. The afpga_out block represents the output of a 

Figure 1. Previous vs. Current afpga Model 
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controllable system rather than an unknown source. The 
standard GNU Radio complex I/Q data format is included as 
an output type so that further processing can occur on the 
host if desired.  In this way hardware and software blocks 
can go into the same flow graph and communicate with one 
another.  The only limitation is that hardware blocks can 
only be placed within afpga_in and afpga_out blocks, and 
regular GNU Radio blocks must be placed outside of them.  
If the functionality of a software block is desired on the 
hardware, currently it must be written in HDL and added to 
the afpga library. 
 The real shift in how hardware is represented in GNU 
Radio comes with the addition of signal processing afpga 
blocks. As with the GNU Radio paradigm, arbitrary signal 
processing chains are composed by connecting various 
afpga blocks. By preserving this assembly paradigm, the 
designer is free to build hardware, and have it interact with 
other hardware or software. Since multiple paths are 
supported, modules can communicate to one or more other 
blocks that may be connected to it. This scheme lends itself 
to improved prototyping because it now has hardware 
blocks that are free to operate the same way GNU Radio 
already treats software blocks. Presenting the hardware to 
radio designers in a familiar and flexible fashion is only the 
first step to enhancing this SDR environment. 
 With GRC, a completely visual representation of the 
software and hardware can be built. By enabling a visual 
component, prototypes can be presented for the designers in 
a clearer way. All of the current afpga blocks have GRC 
representations allowing them to be managed visually.  
There are also scripts in place to automatically add newly 
registered afpga blocks to the GRC repository for dragging 
and dropping into designs. It should be noted that if a 
designer does not want to use GRC, they could continue 
using the GNU Radio Python scripts without losing any 
functionality of this work. 
 
3.2. Core Code Changes 
 
The changes to afpga_in and afpga_out for GRC are purely 
visual. These modules are still sources and sinks within the 
core of GNU Radio. Since the FPGA processing blocks are 
not executed on the host machine, the data stream does not 
necessarily need to be handled by the host computer. In 
order to make this work, the GNU Radio scheduler is 
ignored for these blocks. When two blocks are connected 
from a GNU Radio script, the function gr_flowgraph:: 
connect(source, destination) is run. This does a 
check to make sure the modules have the same type and are 
not already connected. Once this is done the modules are 
added to the scheduler to be run later. Since no software 
data is being sent through the hardware blocks, they are not 
scheduled. The process for ignoring the FPGA blocks is 
currently rudimentary: if both the source and the sink 

contain afpga in the name, then they are not scheduled. Also 
if a USRP2 block is connected to an afpga block, neither are 
scheduled. The USRP2 was modified to send directly to an 
FPGA, which clears an overload of traffic to the host 
machine. This means that the block on the host is no longer 
doing any processing, which is why it too is no longer 
scheduled. If an FPGA block connects to another FPGA 
block, since GNU Radio is no longer recognizing this 
connection, it is logged in ‘fpga_connections.txt’. These 
connections will be used to build a netlist and eventually a 
bitstream for every FPGA in the flow graph. 
 GNU Radio does not run the unscheduled hardware 
blocks, but it does call their constructor functions. Each 
block’s constructor opens a file called ‘edif.dat’ and 
appends one line of information to it (Figure 2). This line is 
a condensed description of the ports available to the Verilog 
module (Figure 3). The file is used by the program 
EdifWriter to build a completely Xilinx compatible EDIF 
file. EdifWriter is part of the qFlow package that will be 
presented soon [11]. The information that is written by each 
block contains a unique name for that block as well as all of 
the port information. The ports that are buses are described 
as ARRAYS with a certain DIRECTION, NAME, and 
SIZE. The ports that are only one bit are described as 
PORTS with just a DIRECTION and NAME. This means 
that most data lines are described as ARRAYS and the 
clock/reset lines are usually PORTS. 
 
 

Figure 2. Sample Module edif.dat Line 
 
 
 
 
 
 
 
 
 
 

Figure 3. Verilog of Sample Module 
 
 
 Within the framework of GNU Radio, all of the blocks 
are created, connected, and then run. The creation process 
yields an ‘edif.dat’ file, and the module connections are 
recorded in the file ‘fpga_connections.txt’. After all of this 
is done, the flow graph is started. This normally calls the 
start() function on all of the blocks that have been 
scheduled, but code was inserted just before this step to 
assemble and program the necessary FPGAs first. The code 

Cell;zb_radio;ZB3;Array;output;out;33;Array;
 input;in;33;Port;input;rst;Port;input;clk; 

 

module zb_radio ( 
output reg [32:0] out, 
input [32:0] in, 
input rst, 
input clk 

); 
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was placed into a separate C++ file called 
‘edif_connector.h’ so that modifications could be made 
without disrupting more of the GNU Radio core. 
 The connect_edif() function starts by cleaning up 
‘fpga_connections.txt’. This means clearing duplicates and 
moving valid information to a file called ‘connections.txt’. 
Since ‘fpga_connections.txt’ is appended to, it has to be 
deleted after each run or the next run will contain all of the 
information from both runs. Using this connection 
information, the function builds a netlist for each FPGA. 
The different FPGAs are identified by different base MAC 
addresses associated with the afpga_in and afpga_out 
blocks. 
 After all of the block's CELL information is added to 
the file, the connection information is added. The 
connections are denoted as either NET or LOOP. A NET is 
a one-bit connection that declares a NAME for itself and 
then points to the bits that it is connecting. The bits are 
identified by pointing to a CELL with a certain INSTANCE 
and then to the desired PORT. If the single bit being 
connected is part of an ARRAY of wires, then the INDEX is 
also given. Otherwise a negative one INDEX tells the code 
that the PORT is only one bit wide and should be treated as 
such. If more than one bit should be connected, a LOOP is 
used instead. A LOOP also starts by declaring a NAME but 
includes a SIZE to make sure that everything connecting to 
it has the same width. After that, all of the wires are 
identified by pointing to a CELL with a certain INSTANCE 
and then to the desired ARRAY. 
 Every CELL is automatically given a NET that 
connects the clock and a NET that connects the reset to a 
global clock and global reset respectively. If a NET or 
LOOP has the same name as another NET or LOOP on a 
different line, they will be automatically concatenated by 
EdifWriter. This allows for multiple lines containing the 
same clock and reset information, but can be used to 
connect a complicated wire set in the future. A complete 
‘edif.dat’ file showing the modules and connections used for 
the implementation of this paper is shown in Figure 4. 
 It is necessary to know that these `edif.dat' files contain 
all of the same information as a Xilinx EDIF file but are 
presented in an easily readable, manipulatable, and compact 
format. EdifWriter parses this information and uses 
TORC to build the more complex netlist. Although these 
files are automatically generated and run, they can be 
modified or written from scratch by any user who wishes to 
describe a netlist in a simpler format before running the 
Xilinx or qFlow tools, which require an EDIF. 
 
3.3. Fast Bitstream Creation 
 
Once a connections list is built, one or more bitstreams must 
be generated in order to actually program any of the FPGAs. 
The remainder of the code mostly calls external scripts to  

Figure 4. Sample edif.dat with Connections 
 
accomplish this goal. Scripts were used for two reasons. The 
first is that the tools being used are still in active 
development as a separate project. It would be impossible to 
incorporate them into the core of GNU Radio. The second 
reason is that these scripts are easily modifiable and can be 
run outside of the GNU Radio framework to interface with 
the tools. This allows any user or program to take an 
‘edif.dat’ file and run through the process of putting a 
bitstream on an FPGA. Also if GNU Radio fails, the process 
can be picked back up from the scripts without running 
everything again. 
 The first script is called ‘edif’, which takes one input: 
the base MAC address of the FPGA it is building. This calls 
EdifWriter on the respective ‘edif.dat’. Once a true EDIF 
is created, a checksum is generated with crc32 [17] to 
represent the contents of the FPGA. This checksum is stored 
on the FPGA so that it can be requested later to determine if 
anything has changed. If the FPGA has never been 
programmed, then there is no checksum on it and the next 
script will be called. If it has been programmed before with 
the exact same netlist, in the case where GNU Radio is run 
twice with only software changes occurring, then the rest of 
the scripts are unnecessary and not run for this FPGA. 
 The second script is called ‘qflow’, which actually 
builds a bitstream using a rapid modular based assembler 
called qFlow. qFlow implements a custom placer that 
quickly decides where to place pre-synthesized modules on 
any FPGA. It then makes use of Xilinx's router to wire 
everything up. This routing is still optimized and thus takes 
around two minutes to complete with the shortest paths. 
 The same script can be modified to call tFlow, or 
Xilinx tools based on what the designer needs. tFlow has a 
little bit more information about the organization of the 
Virtex 5 family, so it is able to do bit-wise manipulation to 
place already routed versions of the modules on the FPGA. 
It then does a small amount of routing at the bit level to 

Cell;zb_radio;ZB3;Array;output;out;33;Array; 
input;in;33;Port;input;rst;Port;input;clk; 

Net;rst;blacktop;BT0;rst;-1;zb_radio;ZB3; rst;-
1; 

Net;clk;blacktop;BT0;clk;-1;zb_radio;ZB3; 
clk;-1; 

Cell;blacktop;BT0;Array;input;in0;33; 
Array;input;in1;33;Array;output;out0;33; 
Array;output;out1;33;Port;input;rst; 
Port;input;clk; 

Loop;BT_in_00;33;blacktop;BT0;in1; 
zb_radio;ZB3;in; 

Loop;afpga_zb_radio_ZB_3_wire_0;33; 
zb_radio;ZB3;out;blacktop;BT0;out0; 
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connect the modules that were placed. This process is fast 
for building a working bitstream. It requires that all of the 
pieces be compiled to the bitstream level in advance, but all 
of the blocks in the current library have been registered with 
tFlow to make this possible. The downside to tFlow is that 
it requires an intimate knowledge of the FPGA family that is 
being worked on.  
 GNU Radio is a system that has a quick turn around 
time, this means that the hardware needs to compile as 
quickly as the software so that prototyping is not hindered. 
The commercially available Xilinx tools offer the most 
optimized, and often only, way of compiling a hardware 
design for their FPGAs. The price for this optimization is a 
long build time, which on large systems can take over a day 
to complete [18]. By relaxing the placement optimization, 
qFlow is able to build a basic radio design in around two 
minutes. By removing the routing optimization and utilizing 
bitstream manipulation, tFlow is able to build a basic radio 
in around twenty seconds. The script could also run the 
original Xilinx tools commonly used today to produce an 
optimal bitstream at the cost of a long run time. No matter 
which process is run, the final output of the ‘qflow’ script is 
a bitstream for an FPGA. 
 The final script called ‘program’, places the bitstream 
that was just built onto the appropriate FPGA. Currently this 
is accomplished using a tool called Impact provided by 
Xilinx from the command line.  
 Once every script has been run, the code moves on to 
another FPGA if one exists. All of the scripts are run again 
for each FPGA. The final step is sending control data to the 
FPGAs to tell them where they should direct data. This 
control data, along with the checksum data from earlier, are 
sent using raw Ethernet packets. Most commonly the data 
are sent back to the host machine but can be directed to 
another FPGA or USRP2 or any other system that is 
listening on the network. When all of the operations in the 
connect_edif() function are completed successfully, it 
returns a true value allowing the rest of the program to start 
the software blocks. If the program detects errors it will stop 
the flow graph and throw a runtime error. The function can 
also determine that there are no appropriate FPGA blocks to 
run and allow GNU Radio to run normally with only 
software blocks. 
 

4. HARDWARE 
 
To facilitate the easy integration of hardware with GNU 
Radio, certain steps are taken on the hardware end to 
manage communication. By organizing the hardware in a 
certain way, the time it takes to assemble is significantly 
reduced. The most beneficial modification to the hardware 

is the segregation of static and dynamic regions on the 
FPGA (Figure 5). There are a few core modules that are 
necessary for every design to communicate with GNU 
Radio. These make up the static region, which never 
changes and thus does not have to be rebuilt every time. 
This saves a large amount of time and is similar to the 
concept of partial reconfiguration where only a section of 
the FPGA is reprogrammed. The difference in this system is 
that a whole bitstream is still built and programmed, but it is 
done faster with a custom assembler that integrates the static 
and dynamic regions. 
 Black boxes are used in the Xilinx tool ISE to provide 
the ability to separate modules from the static region and 
dynamic design. The static region is hard coded and used for 
communication interface modules. The top of the dynamic 
region is a black box that is named blacktop since as a black 
box it appears to be the top of all of the modules being 
placed on the FPGA. All of the signal processing modules 
are also expressed as EDIF black boxes so that blacktop 
only has to see the connections between them. The dynamic 
region is what ‘edif.dat’ represents and covers effectively 
everything that is not the static region. The outer layer of the 
dynamic region is represented by the CELL called 
‘blacktop’ with INSTANCE name BT0. Each path is 
represented by an in and out ARRAY. The clock is 
provided by a PLL in the static region, and the reset is tied 
through the static region to a physical button on the FPGA. 
 To make this flow more desirable, there is a library of 
hardware components in development currently. The 
process is constructed so that the community can easily 
contribute to the hardware library development. A set of 
standards is being used to ensure that all of the blocks can 
work properly together on the targeted hardware. 

Figure 5. Static with I/O buffers, Ethernet and Dynamic Region 
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5. IMPLEMENTATION 
 
The enhancements to GNU Radio allow FPGA blocks to be 
“dragged and dropped” into flow graphs and still keep the 
ability to perform ‘what-if’ experiments. The rapid iteration 
of designs with hardware makes the prototyping of more 
complex radios feasible. But in order to build the hardware a 
library has to exist.  
 Using a library of pre-built and pre-registered hardware 
blocks, a radio can be stitched together for an FPGA just 
like software designers are used to doing. When this library 
has grown into the size that GNU Radio software blocks are 
at now, then any designer can pick up the system and 
prototype applicable radios. The currently available blocks 
are limited to the ones built for demonstrating proofs of 
concept. More are being constructed at Virginia Tech to 
increase the basic available block library.  
 A demonstration of the enhanced GNU Radio is run 
within a virtual machine running on a MacBook Pro with a 
2.3 GHz Core i7 processor, 8 MB shared level 3 cache, 8 
GB of 1333 MHz DDR3 SDRAM, and a 251 GB Apple 
SSD. The software is not limited to one specialized 
computer configuration -- any computer that can run GNU 
Radio can also run GReasy. The MacBook is used here 
since it offers portability and easy access to the attached 
hardware.  The FPGA used is the Virtex 5 on the XUPV5-
LX110T development board, but any FPGA in the 
supported families with an Ethernet adapter can be used. 
 A ZigBee demonstration was done because it is a 
complex standard that can benefit from hardware 
acceleration. The ability to add custom hardware blocks to 
GReasy lets the designer view what is being placed on the 
FPGA and control how it is connected. In Figure 6 the 
USRP2 connects to the afpga_in block, which connects to 
the ZigBee demodulator, which then connects to the 
afpga_out block, which pipes the decoded and demodulated 
stream to a file. The USRP2 is set to run at a center 
frequency of 2.41 GHz with a decimation of 10 and unity 
gain. The USRP2’s constructor sends these settings over 
Ethernet and the host computer is set up as the receiver for 

data. GReasy needs a USRP2 MAC address in order to 
redirect network traffic from the USRP2 to an FPGA 
instead. The hardware setup can be seen in Figure 7. 
 The afpga_in block is set to run FPGA-0 on eth2, 
which means that it will program the first board available 
using the second Ethernet interface on the computer. The 
‘Blacktop Path’ is set to 0 so that qFlow/tFlow can 
connect blocks to the first path in ‘blacktop’, which 
produces an output stream to the Ethernet. The only option 
for the ZigBee demodulator (afpga_zb_radio) is to set the 
instance name. This name is simply a way of identifying 
which blocks are which in the final EDIF created by GNU 
Radio; it is not necessary to set these names for proper 
operation. The afpga_out block is also running on FPGA-0 
across the second Ethernet interface. Its output is green in 
GRC since it is decoding the data as an integer containing 
four characters. In GRC, the software types have to match, 
so the file sink is green as well for this example application. 
GNU Radio handles the conversion of the data to the proper 
type before exposing it to the software blocks. 
 

Figure 6. ZigBee Flow Graph in GRC 

Figure 7. ZigBee Hardware Setup 
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 The compile times for FPGA hardware in this 
prototyped radio have satisfied the “instant gratification” 
experience of GNU Radio. The addition of hardware does 
not slow down the design process and only enhances the 
number of radios that can be successfully implemented.  
 Table 1 shows a comparison of the time it takes to build 
the ZigBee radio using the Xilinx tool ISE against the 
custom tools qFlow and tFlow. For the custom tools, 
Synthesis is only required during the first run of a design 
that changes the internal logic of a hardware block (which 
should not happen often).  Unlike the current tools, this also 
only forces a synthesis of one block instead of re-
synthesizing the entire design.  ISE still runs Synthesis and 
Map even when no changes are made to the design logic.  
As seen in Table 1, for the average design iteration no 
synthesis is performed when using qFlow and tFlow. The 
custom tools are only concerned with placing and routing 
the specified modules, as long as room remains on the 
FPGA. ISE tries to optimize the entire design, so the more 
resources used the longer assembly takes. It can also be seen 
that tFlow does not have any Bit Generate time.  This is 
because tFlow works by stitching together pre-built 
bitstreams of individual modules.  The placing and routing 
is already happening at the bit level, so when it is complete 
the final product is a working bitstream.  Both of the custom 
tools used have performed at more than reasonable speeds 
and this comparison is meant to show where the 
accelerations occur in relation to the tools designed for the 
FPGA.   
 

 
6. CONCLUSION 

 
From the perspective of a radio designer, library-based 
assembly is more natural than low-level hardware 
description languages and hides the complexity of FPGAs. 
In the flow presented here, chains of computation were 
specified for FPGA implementation within the GNU Radio 
framework just as if they were original radio blocks in the 
flow. Once one designer has written standard radios and 
filters in hardware, they can be passed around in the form of 
blocks, which anyone can drop into their design without the 
tedious step of developing for FPGAs.  The tools can place 
multiple hardware accelerator blocks on one FPGA as long 
as there is still available room.  The nature of the tools 
means that more area resources are required, so the FPGA 
will fill up faster, but this is seen as an acceptable trade off 
for many designs that see a large decrease in build time. 

Implementing multiple accelerator paths on one FPGA will 
also begin to cause performance issues in communication 
over the Ethernet line if large amounts of data are sent back 
to GNU Radio at once.  As with any heterogeneous system, 
it will perform best in a situation with minimal 
communication between hardware; but the gigabit speeds 
have been more than adequate for transferring signal data 
between the USRP2 and GNU Radio in the past. 
 The enhanced GNU Radio flow was demonstrated 
using a USRP2 and a Virtex 5 FPGA, all networked to a 
host computer with gigabit Ethernet. One clear benefit of 
this flow was that the FPGAs could be added or taken away 
just like any other module, and were not a forced part of the 
design. Any number of FPGAs could be added, and all of 
the communication and interconnects would be handled 
implicitly. The radio designer could pick the composition of 
a radio using available hardware components, and chose 
where they go in the flow. 
 These enhancements to GNU Radio showed how an 
FPGA system could be built in near real-time for an SDR 
environment. GNU Radio was used as a test bench for 
qFlow and tFlow because of its open nature and current 
lack of FPGA integration. As more hardware accelerators 
are added to GNU Radio a completely heterogeneous 
system could be built even in the prototype phase. 
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